10 research outputs found

    Visual anomaly detection via soft computing: a prototype application at NASA

    Get PDF
    A visual system prototype that detects anomalies or defects in real time under normal lighting operating conditions was built for NASA at the Kennedy Space Center (KSC). The system prototype is basically a learning machine that integrates the three elements of soft computing, Fuzzy Logic (FL), Artificial Neural Network (ANN), and Genetic Algorithm (GA) schemes to process the image, run the learning process, and finally detect the anomalies or defects. The system acquires the image, performs segmentation to separate the object being tested from the background, preprocesses the image using fuzzy reasoning, performs the final segmentation using fuzzy reasoning techniques to retrieve regions with potential anomalies or defects, and finally retrieves them using a learning model built via artificial neural network optimized using genetic algorithm techniques. This prototype system was originally tested on the detection of anomaly or defects at slidewires used in the emergency egress system at the NASA Space Shuttle launch pad at KSC. The prototype system successfully detected all defects classified under "loose strand". The imaging technologies based on fuzzy reasoning approach and created to preprocess the images have received NASA Space Awards and are currently being filed for patents by NASA; companies from different fields including security, medical, text digitalization and aerospace, are currently in the process of licensing these technologies from NASA

    Image Edge Extraction via Fuzzy Reasoning

    Get PDF
    A computer-based technique for detecting edges in gray level digital images employs fuzzy reasoning to analyze whether each pixel in an image is likely on an edge. The image is analyzed on a pixel-by-pixel basis by analyzing gradient levels of pixels in a square window surrounding the pixel being analyzed. An edge path passing through the pixel having the greatest intensity gradient is used as input to a fuzzy membership function, which employs fuzzy singletons and inference rules to assigns a new gray level value to the pixel that is related to the pixel's edginess degree

    Detecting Edges in Images by Use of Fuzzy Reasoning

    Get PDF
    A method of processing digital image data to detect edges includes the use of fuzzy reasoning. The method is completely adaptive and does not require any advance knowledge of an image. During initial processing of image data at a low level of abstraction, the nature of the data is indeterminate. Fuzzy reasoning is used in the present method because it affords an ability to construct useful abstractions from approximate, incomplete, and otherwise imperfect sets of data. Humans are able to make some sense of even unfamiliar objects that have imperfect high-level representations. It appears that to perceive unfamiliar objects or to perceive familiar objects in imperfect images, humans apply heuristic algorithms to understand the image

    Measuring Positions of Objects using Two or More Cameras

    Get PDF
    An improved method of computing positions of objects from digitized images acquired by two or more cameras (see figure) has been developed for use in tracking debris shed by a spacecraft during and shortly after launch. The method is also readily adaptable to such applications as (1) tracking moving and possibly interacting objects in other settings in order to determine causes of accidents and (2) measuring positions of stationary objects, as in surveying. Images acquired by cameras fixed to the ground and/or cameras mounted on tracking telescopes can be used in this method. In this method, processing of image data starts with creation of detailed computer- aided design (CAD) models of the objects to be tracked. By rotating, translating, resizing, and overlaying the models with digitized camera images, parameters that characterize the position and orientation of the camera can be determined. The final position error depends on how well the centroids of the objects in the images are measured; how accurately the centroids are interpolated for synchronization of cameras; and how effectively matches are made to determine rotation, scaling, and translation parameters. The method involves use of the perspective camera model (also denoted the point camera model), which is one of several mathematical models developed over the years to represent the relationships between external coordinates of objects and the coordinates of the objects as they appear on the image plane in a camera. The method also involves extensive use of the affine camera model, in which the distance from the camera to an object (or to a small feature on an object) is assumed to be much greater than the size of the object (or feature), resulting in a truly two-dimensional image. The affine camera model does not require advance knowledge of the positions and orientations of the cameras. This is because ultimately, positions and orientations of the cameras and of all objects are computed in a coordinate system attached to one object as defined in its CAD model

    Image Analysis Based on Soft Computing and Applied on Space Shuttle During the Liftoff Process

    Get PDF
    Imaging techniques based on Soft Computing (SC) and developed at Kennedy Space Center (KSC) have been implemented on a variety of prototype applications related to the safety operation of the Space Shuttle during the liftoff process. These SC-based prototype applications include detection and tracking of moving Foreign Objects Debris (FOD) during the Space Shuttle liftoff, visual anomaly detection on slidewires used in the emergency egress system for the Space Shuttle at the laJlIlch pad, and visual detection of distant birds approaching the Space Shuttle launch pad. This SC-based image analysis capability developed at KSC was also used to analyze images acquired during the accident of the Space Shuttle Columbia and estimate the trajectory and velocity of the foam that caused the accident

    Image Analysis via Soft Computing: Prototype Applications at NASA KSC and Product Commercialization

    Get PDF
    This slide presentation reviews the use of "soft computing" which differs from "hard computing" in that it is more tolerant of imprecision, partial truth, uncertainty, and approximation and its use in image analysis. Soft computing provides flexible information processing to handle real life ambiguous situations and achieve tractability, robustness low solution cost, and a closer resemblance to human decision making. Several systems are or have been developed: Fuzzy Reasoning Edge Detection (FRED), Fuzzy Reasoning Adaptive Thresholding (FRAT), Image enhancement techniques, and visual/pattern recognition. These systems are compared with examples that show the effectiveness of each. NASA applications that are reviewed are: Real-Time (RT) Anomaly Detection, Real-Time (RT) Moving Debris Detection and the Columbia Investigation. The RT anomaly detection reviewed the case of a damaged cable for the emergency egress system. The use of these techniques is further illustrated in the Columbia investigation with the location and detection of Foam debris. There are several applications in commercial usage: image enhancement, human screening and privacy protection, visual inspection, 3D heart visualization, tumor detections and x ray image enhancement

    Visual anomaly detection via soft computing: a prototype application at NASA

    Get PDF
    A visual system prototype that detects anomalies or defects in real time under normal lighting operating conditions was built for NASA at the Kennedy Space Center (KSC). The system prototype is basically a learning machine that integrates the three elements of soft computing, Fuzzy Logic (FL), Artificial Neural Network (ANN), and Genetic Algorithm (GA) schemes to process the image, run the learning process, and finally detect the anomalies or defects. The system acquires the image, performs segmentation to separate the object being tested from the background, preprocesses the image using fuzzy reasoning, performs the final segmentation using fuzzy reasoning techniques to retrieve regions with potential anomalies or defects, and finally retrieves them using a learning model built via artificial neural network optimized using genetic algorithm techniques. This prototype system was originally tested on the detection of anomaly or defects at slidewires used in the emergency egress system at the NASA Space Shuttle launch pad at KSC. The prototype system successfully detected all defects classified under loose strand. The imaging technologies based on fuzzy reasoning approach and created to preprocess the images have received NASA Space Awards and are currently being filed for patents by NASA; companies from different fields including security, medical, text digitalization and aerospace, are currently in the process of licensing these technologies from NASA

    Visual anomaly detection via soft computing: a prototype application at NASA

    No full text
    A visual system prototype that detects anomalies or defects in real time under normal lighting operating conditions was built for NASA at the Kennedy Space Center (KSC). The system prototype is basically a learning machine that integrates the three elements of soft computing, Fuzzy Logic (FL), Artificial Neural Network (ANN), and Genetic Algorithm (GA) schemes to process the image, run the learning process, and finally detect the anomalies or defects. The system acquires the image, performs segmentation to separate the object being tested from the background, preprocesses the image using fuzzy reasoning, performs the final segmentation using fuzzy reasoning techniques to retrieve regions with potential anomalies or defects, and finally retrieves them using a learning model built via artificial neural network optimized using genetic algorithm techniques. This prototype system was originally tested on the detection of anomaly or defects at slidewires used in the emergency egress system at the NASA Space Shuttle launch pad at KSC. The prototype system successfully detected all defects classified under "loose strand". The imaging technologies based on fuzzy reasoning approach and created to preprocess the images have received NASA Space Awards and are currently being filed for patents by NASA; companies from different fields including security, medical, text digitalization and aerospace, are currently in the process of licensing these technologies from NASA

    Implementation of a General Real-Time Visual Anomaly Detection System Via Soft Computing

    No full text
    The intelligent visual system detects anomalies or defects in real time under normal lighting operating conditions. The application is basically a learning machine that integrates fuzzy logic (FL), artificial neural network (ANN), and generic algorithm (GA) schemes to process the image, run the learning process, and finally detect the anomalies or defects. The system acquires the image, performs segmentation to separate the object being tested from the background, preprocesses the image using fuzzy reasoning, performs the final segmentation using fuzzy reasoning techniques to retrieve regions with potential anomalies or defects, and finally retrieves them using a learning model built via ANN and GA techniques. FL provides a powerful framework for knowledge representation and overcomes uncertainty and vagueness typically found in image analysis. ANN provides learning capabilities, and GA leads to robust learning results. An application prototype currently runs on a regular PC under Windows NT, and preliminary work has been performed to build an embedded version with multiple image processors. The application prototype is being tested at the Kennedy Space Center (KSC), Florida, to visually detect anomalies along slide basket cables utilized by the astronauts to evacuate the NASA Shuttle launch pad in an emergency. The potential applications of this anomaly detection system in an open environment are quite wide. Another current, potentially viable application at NASA is in detecting anomalies of the NASA Space Shuttle Orbiter's radiator panels
    corecore